

37TH ANNUAL BRAKE COLLOQUIUM & EXHIBITION

Friction ICS

An innovative and integrated system for EOL pad quality control

Cristian Malmassari Brembo S.p.A.

Everything brake science and technology

Overview

- 1. Introduction Brake Pads Variability
- 2. Out-of-plane Stiffness
 - Brembo Shake vs UT measurement with iETEK
 - Troubleshooting case study with Shake and iETEK
 - Ultrasonic E₇ measurements and validation
- 3. End-of-Line Pad Quality Control
 - Friction ICS introduction
 - Pad dimensional control
 - Rapid iETEK
 - Preliminary results
- 4. Quality Control Process Validation NVH Dyno Tests
- 5. Summary and Future Developments

SAE INTERNATIONAL 2

Introduction Brake pads variability

Backplate and friction material dispersion in terms of geometrical properties and mechanical/physical/chemical features could have severe impacts over various quality aspects:

- Brake pad
 Friction material porosities, cracks, chunks and non-uniformities could lead to breakage and delamination
- Caliper assembly
- Performance
 Scarce backplate flatness and parallelism can cause residual torque, pedal feeling and fluid absorption issues
- NVH
 number of squeal frequencies, squeal occurrence levels,
 judder behavior

Squeal occurrence variability with different pads (same code, same batch)

2.1 Out-of-plane Stiffness

Brembo Shake® vs UT measurement with iETEK

Mechanical piezoelectric actuation

Samples: specimens (20x20/30x30 mm²)

Frequency range: 0.5-4 kHz
Sample area: 400-900 mm²
Static preload: 5-40 bar

Testing time: 90 min/sample

Ultrasonic measurement

Samples: full pad / specimens (30x30 mm²)

Frequency range: 0.2-1 MHz Sample area: 170 mm²

Static preload: 100-800 N (6-47 bar)

Testing time: 1 min/sample

2.2 Out-of-plane Stiffness

Troubleshooting case study with Shake® and iETEK

iETEK

- high correlation between Shake E_z and iETEK E_z
- iETEK vs Shake E_z ratio between 1.3 and 1.6 depending on friction material type

2.3 Out-of-plane Stiffness Ultrasonic E_z measurements and validation

IMS IETEK

Brembo Shake

- The correlation between Shake measurement on pad samples and iETEK on full pads has been verified over several applications
- The differences in terms of NVH performances between high and low E_z pads should be verified over wider datasets

3.1 End-of-Line Pad Quality Control Friction ICS Introduction

- 100% EOL control
- Fully automated pad handling system through:
 - 1. Backplate dimensional control
 - 2. Rapid iETEK
 - 3. Backplate and friction material thickness measurement and control
 - 4. Serial number marking with NOK control indication
- Total cycle time < 10 s

Developed by:

3.2 End-of-Line Pad Quality Control Pad dimensional control

 Dimensional control of up to 5 geometrical features of the pad backplate by means of a telecentric lens

- Double laser scanning system for high-accuracy thickness measurements of backplate and friction material
- Thickness data are used both for E_z calculation and pad dimensional control

3.3 End-of-Line Pad Quality Control Rapid iETEK

- 4 measurement points for friction material out-of-plane stiffness
- Automatic pad placement and upper UT probes movement
- Real-time controlled preload on each UT probe (600 N)

Measurement time < 0.2 s

- Total time < 2 s (load - measure - unload)

In collaboration with:

3.3 End-of-Line Pad Quality Control Rapid iETEK

 Very good level of correlation between Lab iETEK and Rapid iETEK through all the development stages

3.3 End-of-Line Pad Quality Control Friction ICS

3.3 End-of-Line Pad Quality Control Preliminary results

Out-of-plane pad
 stiffness = average
 of E_z among the 4
 measurement points

4. Quality Control Process Validation NVH Dyno Tests - Pad selection

- E_z values of internal and external pads are normally distributed
- For NVH dyno test sets of pads with high, medium and low values of E_z have been selected

4. Quality Control Process Validation NVH Dyno Tests - Results

 Sets of pads with higher E_z levels show lower and less variable occurrence at 1.5 kHz

* Pad E_z is the average value among the 4 measurement points

5. Summary and future developments

- An innovative control system for brake pads has been developed and placed at the end of production line featuring:
 - Backplate dimensional control
 - Out-of-plane stiffness measurement
 - Backplate and lining thickness measurement and control
- Pads with different values of out-of-plane stiffness (E_z) has been selected among an entire batch and tested on dyno: as seen in the past years the results show a possible correlation between Ez and occurrence for specific instabilities
- Future activities include:
 - NVH dyno testing on several applications to gain experience about E₇ influence on squeal
 - Definition and validation of specific NVH oriented E_z limits for each application
 - E_z driven modification of pad formulation and production process to optimize NVH performance of friction materials

Thanks for your attention

Cristian Malmassari cristian_malmassari@brembo.it

NVH Methodologies